Showing Equality using Venn Diagrams (3 Sets)

Math 1001

Quantitative Skills and Reasoning

Venn Diagrams Involving Three Sets

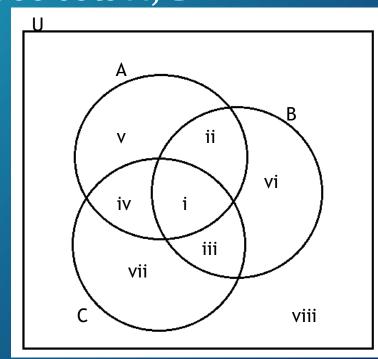
• The given Venn diagram shows the eight regions formed by three intersecting sets in a universal set *U*.

• It shows the eight possible relationships that can exist between an element of a universal set *U* and three sets *A*, *B*

and C.

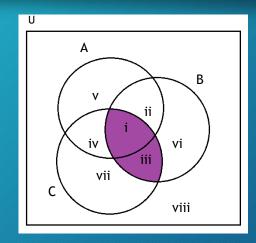
• An element of U:

- May be an element of each A, B and C (Region i)
- May be an element of A and B, but not C (Region ii)
- May be an element of B and C, but not A (Region iii)
- May be an element of A and C, but not B (Region iv)
- May be an element of A, but not B or C (Region v)
- May be an element of B, but not A or C (Region vi)
- May be an element of C, but not A or B (Region vii)
- May not be an element of A, B, or C (Region viii)

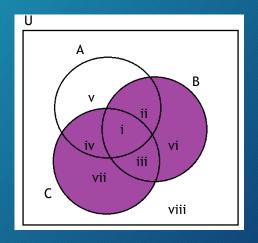


Venn Diagrams Involving Three Sets

- Which regions represent B ∩ C?
 - $B \cap C$ is represented by all the regions common to circles B and C. Thus $B \cap C$ is represented by regions i and iii.

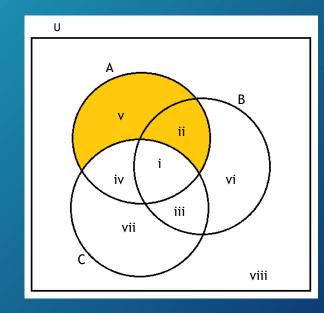


- Which regions represent B ∪ C?
 - $B \cup C$ is obtained by joining the circles B and C. Thus $B \cap C$ is represented by regions i, ii, iii, iv, vi, and vii.



Venn Diagrams Involving Three Sets

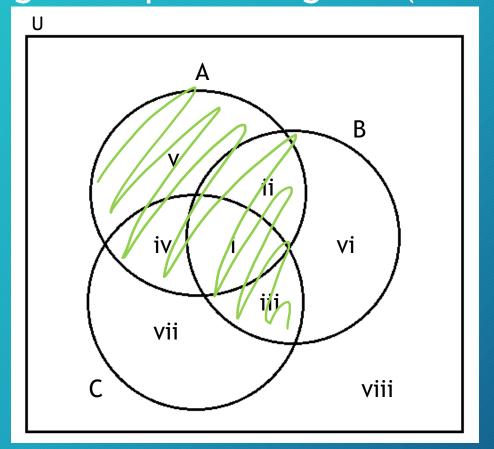
- Which regions represent $A \cap C'$?
 - A \cap C' is represented by all the regions common to circles A and simultaneously not in circle C. That includes the regions ii and v.



- Determine whether $A \cup (B \cap C) = (A \cup B) \cap C$ for all sets A, B, and C.
 - First, determine which regions are included in A.
 - Next, determine which regions are included in $B \cap C$.

• Then, determine which regions are included in $A \cup (B \cap C)$.

• Determine regions representing $A \cup (B \cap C)$



```
A:i,ii,iv,v

Bnc:i,iii

A U LBNC):

i,ii,iii,iv,v
```

- Determine whether $A \cup (B \cap C) = (A \cup B) \cap C$ for all sets A, B, and C.
 - First, determine which regions are included in A.
 - A includes the regions i, ii, iv, and v.
 - Next, determine which regions are included in $B \cap C$.
 - $B \cap C$ includes all elements that are common to both B and C. These are the regions i and iii.
 - Then, determine which regions are included in $A \cup (B \cap C)$.
 - Here we include each region mentioned previously. Therefore, we have regions i, ii, iii, iv, and v.

- Now we must check to see if $(A \cup B) \cap C$ is also represented by regions i, ii, iii, iv, and v.
 - First, determine which regions are included in $A \cup B$.

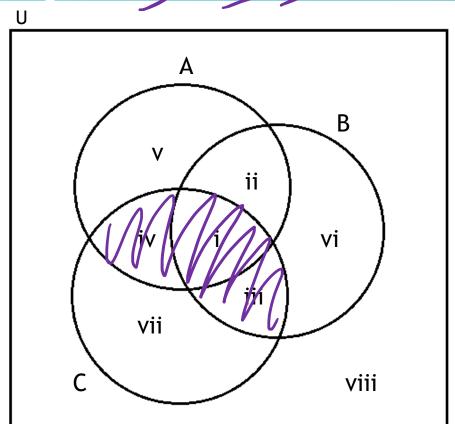
- Then, determine which regions are included in C.
- Finally, which region(s) represent the intersection of $A \cup B$ and C.

• Now we must check to see if $(A \cup B) \cap C$ is also represented by regions i, ii, iii, iv, and v.

```
AUB:
1,111,111,111,111

C:
1,111,111,111

(AUB) n c:
1,111,111
```



- Now we must check to see if $(A \cup B) \cap C$ is also represented by regions i, ii, iii, iv, and v.
 - First, determine which regions are included in $A \cup B$.
 - Regions include all those in the circles A and B: regions i, ii, iii, iv, v, and vi.
 - Then, determine which regions are included in C.
 - C includes regions i, iii, iv, and vii.
 - Finally, which region(s) represent the intersection of $A \cup B$ and C.
 - The regions common to both $A \cup B$ and C are region i, iii, and iv.
- Since both are represented by different regions, we know that $A \cup (B \cap C) \neq (A \cup B) \cap C$ for all sets A, B and C.

Properties of Sets

- For all sets A and B:
 - Commutative Properties
 - $A \cap B = B \cap A$
 - $A \cup B = B \cup A$
- For all sets A, B, and C:
 - Associative Properties
 - $(A \cap B) \cap C = A \cap (B \cap C)$
 - $(A \cup B) \cup C = A \cup (B \cup C)$

• Does $(B \cup C) \cap A = (A \cap B) \cup (A \cap C)$?

Yes. The commutative property of intersection allows us to write the distributive property in this way as well as the way it is written below.

Distributive Properties

•
$$(A \cap (B \cup C)) = (A \cap B) \cup (A \cap C)$$

•
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$